Version N° 1.0

LaurTec

LTlib 5

User Manual

Author : Mauro I .aurent:

Copyright © 2020 Mauro Laurenti 1/19

License

The Documentation is provided in an “As Is” condition. No warranties, whether
expressed, implied or statutory, including but not limited to, implied warranties of
mechantability and fitness for a particular purpose apply to this material.

The Author shall not, in any circumstances, be liable for special, incidental or
consequential damages, for any reason whatsoever.

Copyright (C) - Mauro Laurenti

All trademarks are the property of their respective owners

Copyright © 2020 Mauro Laurenti 2/19

LaurTec LTlib5 User Manual

Index

INEEOAUCHION. ... 4
The path from LTLD 4 t0 LTIHD 5.......oooviiiiiiceicricncieececeeeieietsesessescse et ss s ssaessesens 4
Software versions Free, Maker and PRO ...ttt ettt ss et es et ss et ve s ense s ers 5
LTLb file OfaniZation.........cccoieiiueiiiiiiiciicieieecetcet sttt s s sees 6
LT1ib coNfiguration fIlES........c.ccceviueiieiniciriiiecciieecieeeeetee sttt 7
CIEALE A NMEW PIOJECT.......oiuiieiiiiiiitct bbb 9
Change a project from one architecture t0 aNOther............ccooiiiiiiiiic s 11
Use a different configuration file.............cccooviiiiiiiiiiiii s 12
Add a new device to the LIDIALY ...ttt sttt sttt nesens 14
BibHOGIAPRY ..ottt 18
HISTOLY ..ottt 19

3/19

Laar T ec LTlib 5 User Manual

Introduction

LTIib library makes programming with the MCUs easier than before. It integrates both
MCU peripheral libraries as well as external IC libraries. This makes implementing an
application as easy as connecting building blocks. The IC libraries span from IO
extenders, LCD drivers, memories, data converters and sensors. LTlib is independent
from Microchip peripheral libraries as well from the standard libraries that may come with
the compilers. As it is now, the library supports PIC microcontrollers from the following
architectures:

e PIC with 8 bit architecture.
e PIC with 32 bit architecture.

The path from LTlib 4 to LTlib 5

LTlib 4 was first introduced in February 2016. The main goal was to make the previous
PIC18 library independent from the Microchip Peripheral library. This was done by
introducing the module_xxxx libraries to cover and support the internal peripherals.
Furthermore the IC libraries got integrated with the peripheral libraries, making the IC
initialization easier. Indeed by each IC initialization it was possible to initialize the MCU
as well. Each supported MCU got a configuration file, out of which it was possible to
provide, beside the MCU configuration, also the MCU characteristics used by the LTlib
library.

LTIlib 5, inherited all that features, further extending it. The library architecture of
LTlib 4 made easy extending it to other MCUs, by keeping the same configuration file
and basic code. All the IC libraries got supported by extending the module_xxxx files.
The configuration files have been reorganized to make their customization easier. This
allow adding new MCUs with less effort.

As code clean up, to support easy of use, all the C18 code compatibility has been
removed, supporting XC compilers only. Fach code and example has been re-compiled
supporting XC compilers from version 2.x, thus supporting C99 standard by default. This
was needed since LTlib 4 was developed for compiler versions smaller than 2.x.

To improve the code standards, all the code support now data format according to ANSI
standard, such as uint16_t instead of simple int. This allows keeping a known variable size
by changing MCU architecture. Indeed by moving codes by 8 to 32 bits MCU
architectures, subtle bugs may occur if that precaution would not have been taken.

Those changes allow writing a code that may easily be compiled with both 8 bits and 32
bits MCUs.

4/19

LaurTec LTlib5 User Manual

Software versions Free, Maker and PRO

The activities made by LaurTec, among which LTlib, always have the main goal to
support education applications for free, without charge. Thus the library, with minor
limitations is offered also for free. The library is offered in three different versions:

 Free
Maker
« PRO

The Free version can be used without charges for non commercial applications, as
specified in details within the header file of each library. It includes 8 bits architecture
only.

The Maker version offers some additional libraries. As the free version is not intended for
commercial applications. That version can be requested with a simple donation. No
minimum donation is needed, just offer the coffee you want let me drink to remain awake
while coding. The maker version is intended to support farther development of the library
and payback the working hours behind it. Professors may request for free the maker
version and offer the same rights to the students that will attend the class. So for the
students there would be no need to spend any money to get the libraries used during the
class. They can bring their maker version at home and keep programming. The Maker
version includes 8 bits architecture only.

PRO version, it is based on the maker version but may have additional libraries. Major
difference is that it can be used for commercial purposes and you would have direct
support. PRO version is for sale and you would need to request a quote for it. 8 and 32
bits architecture can be requested separately.

5/19

Laar T ec LTlib 5 User Manual

LTlib file organization

LTlib does not need any installation, you just need to download it and copy the folder
within your preferred working path. The library name is LTlib_v_5.x.x where the x.x
denotes the subversion. This allows using multiple versions of the library without
overwriting older ones. Each project can be linked with a specific version of the library.
The folder is organized as shown in Figure 1.

conf
doc
X
inc
sch
srC
@ Version_Readme.cdt

Figure 1: LTIlib organization.
The content in each folder is as follow:

« conf
Configuration files related to LTlib and each supported devices.

* doc
LTlib documentation. This includes the high level information and not the library
documentation. The library documentation can be found inside each header file.

* ex
Code examples. Each library has a folder with one or multiple examples that show
the basic library usage.

* inc

Include files for each library. The header file represents the documentation for
each library. The format is compatible with Doxigen, thus it could be extracted
and navigated by extracting it in HTML format. The documentation inside the doc
folder does not provide the extracted documentation from the header files.

* sch
It contains simple schematic to properly use a specific library. Referring to the
datasheet is always recommended, since a proper schematic may differ by each
application.

* src
It contains the source code of each library.

« src/modules_xxx

It contains the source code for the peripheral libraries. The available codes are
architecture depended, thus you have one folder per MCU architecture.

6/19

LaurTec LTlib5 User Manual

LTlib configuration files

The configuration files that can be found inside the conf directory are a key part of the
library. The main configuration file is the LTlib.h file. This file must be included inside
each project. The file contains the main settings that are related to the MCU, such as the
clock frequency, compiler settings and supported devices. Below there is a simple code
cut out from the file:

//***

// COMPILER AND MCU INFO

//***

#if defined (XC H) || defined (__XC H)
#define COMPILER XC
#endif

#ifdef XC8
#define COMPILER XC8

#endif

#if defined (PIC32C) || defined (__PIC32M)
#define COMPILER XC32

#endif

#ifdef COMPILER XC
#include <xc.h>
#endif

//***

// LIBRARY TYPE DEFINITIONS

//***

#include "LTlib types.h"

//***

// SYSTEM & MODULE CLOCKS
//***

#ifndef SYSTEM CLOCK
#define SYSTEM CLOCK 20000000
#endif

#ifndef I2C CLOCK
#define T2C CLOCK SYSTEM CLOCK
#endif

#ifndef UART CLOCK
#define UART CLOCK SYSTEM CLOCK
#endif

#ifndef SPI CLOCK
#define SPI CLOCK SYSTEM CLOCK
#endif

It is possible to see that also the compiler is cheeked here. This allows to propetly
initialize the LTIib library.

7/19

Laur T ec LTlib 5 User Manual

Many parameters inside the LTlib library support being changed without the need of
changing the file. LTlib.h already offers that feature as other IC libraries. Each parameter
that can be changed is typically wrapped as follow:

#ifndef UART CLOCK
#define UART_CLOCK SYSTEM_CLOCK
#endif

In this way if there is no previous definition of the parameter, the default one is used. To
set the UART_CLOCK to a different value it is required to define it before the LTIib file
is called the first time.

The other key configuration files are the ones related to each supported device. Each
device that is supported has a configuration file. The configuration file is automatically
loaded by LTlib.h depending on the device that gets selected once a new project is created
via MPLAB X IDE. There is indeed no need to specify to the library the used device,
since that information gets automatically retrieved by the project information, upon its
creation or once the device gets changed.

Each device configuration file is made of three parts:

* LTlib configurations
It contains the list of supported peripheral modules. In this way, if a specific
module library is used, it can check if the module is supported.

* Module Settings
It contains all the module information. Such as number of 10, ADC channels,
number of UARTS and so on. For each module, there is also the count for it and
the pin location in case specific pins may need to get propetly initialized.

* MUCU configurations
These are the standard MCU configuration required by the compiler and the
selected MCU. It is a list of #pragma config associated with each configuration.
The configuration related to each MCU is provided within the XC compiler
documentation.

8/19

LaurTec LTlib5 User Manual

Create a new project

Using LTlib is quite easy. Since no installation is required, the only thing which is
needed is to update the IDE include paths.

The first thing to be done is to create a new project. If you have already a new one and
you want to start using LTlib, works fine as well.

Afterward you need to update the project proprieties. Just select your project in the
navigation pane, and right click on it, then select Proprieties. 1f you are working with
MPLAB X and XC8 you will get the window as the one in Figure 3.

'X' Project Properties - 03_-_Interrupt_events

Categories:
. © General Options for xc8-cc (v2.05)
----- @ File Indusion/Exdusion Option categories: | Preprocessing and messages w Reset
E- @ Conf: [default
Lo o PICKt4 Define macros
’ @ Loading Undefine macros
i @ Libraries
L Preprocess assembly files
= @ Buiding
B} © XC8 Global Options ndude directories
b @ XC8 Compiler Verbose
i O XCB Linker :
; Warning level

‘@ Code Coverage

Use CCI syntax

Generate the ASM listing file

Additional options:

Option Description Generated Command Line

Specifies include path.

Relative paths are from MPLAB X project directory.

Manage Configurations...

Cancel Apply Unlock Help

Figure 2: Project Proprieties window - XC8.

Among the global settings on the left side, select XC8 Compiler, while on the right side
update the include directories. You would need to add the following ones:

e conf
* inc
e sfc

« src\modules_ PIC_8 bits

the include paths show that the module source code is architecture dependent, thus
beside the src path, as it was done by LTlib 4, it is required to add the specific folder

9/19

LaurTec LTlib 5 User Manual

containing the module libraries for the specific architecture that is used.

LTlib 5, is compiled with the warning level 0 rather than -3, thus it is recommended to
change it to 0. Keeping the level as -3, may show some additional Messages and Warnings
depending on the library that is used.

If the project is based on the MPLAX IDE and the compiler XC32, the steps are the
same but the Proprieties window is slightly different, as shown in Figure 3.

'X' Project Properties - 02_-_D51337_Time_Alarm

Cateqgories: S
-~ 0 General Options for xc32-goc (v2.20)
- @ File Indusion/Exdusion Option categories: | (All Options) w Reset
- @ Conf: [default
L O PICKt4 Ise Legacy libc
i @ Loading Don't delete intermediate files O
o @ Libraries
L Use Whole-Program and Link-Time Optimizations |[_]
e @ Building
(== =2 (Clobal Options) IUse GP relative addressing threshold
i @ xc32-35 Relaxed floating-point math |
- @ xc32-goc
ICommon include dirs S conf G ingg G e
o oot Vel b deonf G b .
- @ xc324d
e @ XE32-ar
- @ Code Coverage
Additional options:
Option Description | Generated Command Line User Comments
Manage Configurations...
Cancel Apply Unlock Help

Figure 3: Project Proprieties window - XC32.

In this case to set the path you need to select the XC32 (Global Options) on the left side
and the Common include dirs field on the right side. You would need than to add the

following paths:
» conf
* inc
* stC

e src\modules_PIC_32 bits

This time as well, the module libraries path is architecture dependent.

10/19

LaurTec

LTlib5 User Manual

Change a project from one architecture to another

As it has been shown during the creation of a new project the only thing that change
between the architectures is that the module libraries path is changed. This is a key change
while switching the project from one MCU architecture to another. Nevertheless before
doing it, the following steps are required.

Select the Project Proprieties window and set the new MCU first, either from the 8 or 32
bits architecture, as shown in Figure 4. Once you have selected the new MCU from the
Device field, the Compiler Toochains window on the right side gets updated with the new

available compilers. Select the one that apply to your use case and press the App/y button
in the bottom.

iX! Project Properties - 02_-_Light_and_Temperature_read

Categories: Configuration
- © General Family: Device:
¢ @ File Inclusion/Excusion Al Families ~ | PIC32MX220F0328 v
=l @ Conf: [default
o @ PICKE3 Supported Debug Header: Supported Plugin Board:
e @ Loading
i @ Libraries IOE tone
@ Building) Packs: Hardware Tool: Compiler Toolchain:
? XC8 Global Options | Packs Hardware Tools | Compiler Toolchains
i @ XC8 Compiler El-| | PIC32MX_DFP @ Atmel-ICE €32
- XCB Linker o - ICD 3 =-%C32 [Download Latest]

L0 Code Coverage

oo ICD4] R s¥C32 (v2.20) [C:'\Program Files (x3
(=2 PICKIt 4
L.5N: BUR 184652125
00
- PM3
-3 Real ICE
- Simulator
-0 Snap
= | Alternate Tools
@ EDEG
-@ JTAGICES
-@ mEDBG
-@ PICkit2
@ PKOB nano

..@ Power Debuager v
< » < >

el el *Tip: double dick on serial number (SN} to use a friendly name (FN) instead.

Cancel Apply Unlodk Help

Figure 4: Project Proprieties window — new MCU selection.
Only after you apply the new MCU and compiler, the left side of the window is updated

with the new proprieties and settings for the new Tookhain. In Particular the left side, after
applying the new settings will be updated as shown in Figure 5.

From that point, the included path are removed, thus you need to insert it again as it has
been shown on the previous paragraph. So select XC32 (Global Options) and then the

Common include dirs field on the right side.

At this point your are ready to go, programming with the new architecture.

11/19

LaurTec LTlib 5 User Manual

i3 Project Properties - 02_-_Light_and_Temperature_read

Categories: Configuration
o @ (General Farily: Device:
¢+ @ Flle Indusion/Exdusion Al Famiies w| |Picaamx220F0328 v
&
! PICK 3 Supported Debug Header: Supported Plugin Board:
Loading
Libraries Mone Mone
Buiding Packs: Hardware Tool: Compiler Toolchain:
XC32 (Global Options) Parks Hardware Tools A Compiler Toolchains
o xc32-as = | PIC32MX_DFP - Atmel-ICE 32
O xc32-gee - R 0 1D 3 E-¥C32 [Download Latest]
@ xc32g++ o0 ICD 4
& we32dd [=-cn PICKit 4
@ we3lar L.5N; BUR 184652125
i Code Coverage oo
- PM3
-3 Real ICE
- Simulator
-3 Snap
=~ | Alternate Tools
- EDBG
@ JTAGICE3
@ mEDBG
@ PICKit2
@ PKOB nano
..o Power Debugaer hd
< > < >

Manage Configurations.... *Tip: double dick on serial number (SN} to use a friendly name {FIN) instead.

Cancel Apply Unlock Help

Figure 5: Project Proprieties window — after the new Toolchain.

Use a different configuration file

LTlib 5 comes with the configuration file for each device that is supported.
Configurations are made to be changed, thus the configuration file can be changed as
well. There are 3 major ways to do that with pro and cons, as shown below.

» Change directly the configuration file.
You can update directly the configuration file, but this means loosing the original
file content. Nevertheless is the quickest and easier ways to do it. To get the
original file you can always download LTlib again.

» Copy and paste the configuration file of interest and rename it with your project
name or similar name. In this way you do not loose the original library file.
The new configuration file is not automatically loaded by the library. To properly
call the configuration file you need to change the LTlib.h file with your new file
name. For instance if you have created a new configuration file for the
PIC18F46K22 you can change the following section of the LTlib.h file:

#ifdef 18F46K22
#include "PIC18F46K22 config.h"
#define CHIP_ SUPPORTED

#endif

the file name PICI18F46K22_configh, must be updated with your new

12/19

LaurTec LTlib5 User Manual

configuration file name. By each new project you will create with the PIC18F46K22
the new configuration file is loaded automatically.

Another option for loading a new configuration without changing the LTlib.h file
would be to create two copies for the configuration file, so that you have the
original one plus the two copies, as shown below:

PIC18F46K22_configh
PIC18F46K22_config_Copy_1.h
PIC18F46K22_config_Copy_2.h

you can then rename one of the copy as xxx_Original and the second one with
your project name. This second file is the one that you would change based on
your configuration needs.

PIC18F46K22_config.h
PIC18F46K22_config Original.h
PIC18F46K22_config_Your_Project.h

By creating a new project, only the PIC18F46K22_config.h is loaded, thus you can
change the content of the PIC18F46K22_config.h by including the configuration

you want. For instance:

#include "PIC18F46K22 config Your Project.h"

All the configuration information can be deleted, you just write the single code line
as before. Indeed the configuration file PIC18F46K22_config Original.h has the
original settings and nothing has been lost.

With this change the new configuration file will be automatically loaded. If a new

configuration is needed you can add it by creating a third file and update the
#include option within the main configuration file.

13/19

Laar T ec LTlib 5 User Manual

Add a new device to the library

LTlibs 5 comes with the support of the MCUs that are typically used within the
LaurTec projects. This means that the library may not support directly the MCU you
need. This is in general not a big problem since many MCUs share similar module
architectures. If specific modules are not supported or different, you may need to update
the module libraries and it may get more complicated unless you are an experienced
programmer. In the following section I will cover only the case where you do not need to
update the module libraries. Nevertheless the following steps would apply to the second
case as well. So you would need to follow first the following steps and if you do not need
to change the module libraries you are ready to go, while if you need to change it, you
would do it after the updates shown below.

Let us analyze few easy Use Cases

Use Case A

The easiest use case is when you need to add the same device with another voltage
level. For instance you need the PIC18LF46K22 while the library supports the
PIC18F46K22 without L. In this case just copy and paste the configuration file

PIC18F46K22_config.h and rename it PIC18LF46K22_config.h , by adding the L. Open
the configuration file and update the definition Header from:

#ifndef PIC18F45K22 CONFIG H
#define PIC18F45K22 CONFIG H

to:

#ifndef PIC18LF45K22 CONFIG H
#define PIC18LF45K22 CONFIG H

Afterward you would need to update the LTlib file, so that once you will create a new
project with the PIC18LF46K22, it would automatically load the new configuration file. If
you will forget that step, by selecting the PIC18LF46K22 and compiling the project, you
will get the error:

#ferror LT1lib is not tested on the microcontroller you have selected

The new MCU must be added within the compiler group that can be found within the
LTIib file. Indeed each compiler has a list of MCUs that are supported.

For the PIC18LF46K22 you can search for the COMPILER_XC8 and add the following
line after any MCU of the group, as shown below.

14/19

LaurTec LTlib5 User Manual

#ifdef 18LF46K22
#include "PIC18LF46K22 config.h"
#define CHIP_ SUPPORTED

#endif

After that modification you can compile new projects with the new MCU.

Use Case B

Let’s assume we want now to add the PIC18F23K22. The new MCU is similar to the
PIC18F46K22 since it belongs to the same family but it has a different package. This will
reflect in having less 10, probably different number of ADC channels and sometime less
communication modules. With other MCUs packages you may have the other way
around, such as more pins and more ADC channels.

As case A, we can start by copy and paste the configuration file of the
PIC18F46K22_config.h, since it is the most similar MCU. We can then rename it
PIC18F23K22_config.h.

This time the configuration must be really checked and updated, since we have a different
package. The configuration file contains all the peripheral settings that are supported:

#define IO LIBRARY SUPPORTED
#define UART LIBRARY SUPPORTED
#define SPI LIBRARY SUPPORTED
#define I2C LIBRARY SUPPORTED
#define EEPROM LIBRARY SUPPORTED
#define ADC_LIBRARY SUPPORTED
#define FLASH LIBRARY SUPPORTED

in this case they are the same, otherwise we should have removed or eventually added it
depending on the available modules. The right definition name to be added can be found
on similar MCU configuration files or by opening the module library of interest. Indeed
the definition name is checked within each module library file.

Afterward it is needed to go to each peripheral setting and double check it. In particular
the pin definitions may change.

For the 10 section we would need to update it from the following code:

//**

// I0

//**

#define NUMBER OF IO PORTS 5

#define PULL UP RESISTORS AVAILABLE

#define PULL UP _ENABLE BIT INTCON2bits.RBPU
#define PULL UP_SINGLE BIT ENABLE

#define PULL UP ENABLE REGISTER B WPUB

15/19

Laar T ec LTlib 5 User Manual

into:

//**

// 10

//**

#define NUMBER OF IO PORTS 3

#define PULL UP RESISTORS AVAILABLE

#define PULL UP ENABLE BIT INTCON2bits.RBPU
#define PULL UP SINGLE BIT ENABLE

#define PULL UP ENABLE REGISTER B WPUB

If MCLR is used as 10, since it is mapped to PORT E, you need to keep 5 as port count
and not 3. Otherwise you will not be able to access PORTE via module_IO library.
Keeping 3 still make possible to access the port via direct access of the register PORTE.

The communication modules require some care since the reduced IO pins may imply that
the pins are mapped differently. An example is the UART module 2 which is not on
PORT D but PORT B, thus the configuration must be updated. Reduced 1O may also
imply that less communication modules may be available. LTlib supports, as it is today,
up to two modules per communication type so 2x UART, 2x SPI and 2x 12C.

Once all the configurations are matched for the new device, it is important to double
check if the number of ports you have selected with NUMBER_OF_IO_PORTS, it is
supported by the library module_IO. You can do that by checking the module_IO.c file
of the architecture you are using. For the specific case, it is possible to see that there is the
block:

#if (NUMBER OF IO PORTS == 3)

which contains all the initialization for the 3 ports use case; thus we are fine for the
PIC18F23K22.

Once all the configurations are updated, it is possible to update the LTIib file by adding:

#ifdef 18F23K22
#include "PIC18LF46K22 config.h"
#define CHIP_ SUPPORTED

#endif

16/19

LaurTec LTlib5 User Manual

Index

3 MCLRueovveteeeeeteecteeeee ettt 16
32 bit ArChItECTULE...vevieveeeereeeereeereeeeeeere et 4 module_TO.Cuuniiereiereeereeereeeeeeeeeeeeeeeree e 16

8 MOAULE XXXXK e eteereeeeeeeeeeeeeeeeeeeereeeesreeseeseeseeseeseesnes 4
8 bit architeCtUre. . oviivviviereriereeeereeereeereeereeererevenes 4 N

A NUMBER_OF_TIO_PORTS.....coovvrvreririrrrenen. 16
ANSL.coeeeeeeeeeeeere ettt et e 4 P

C PORTE ...ttt eseveves e 16
€99ttt 4 PROecsecte et 5
CHIP_SUPPORTED.....cccoouveirreeeiereereeeenrennn 15 PRO VErSION..uiiiiiieirieiieiieesieeste e seesresse e sveeenens 5
Common include difs......ccooeevvieiricrricvniennnnenns 11 Project Propfieties.......cccouevivivivicrnicinininiiincninnnn. 11
Compiler Toochains........cccceuviviniicciininiciininnnas 11 R
COMPILER_XCS8....ooiiirieiiereeeeeeerererereennas 14 RBPU.ccccccccceeeeee e 16
CONFciiiiiiii e 6eseg.,9eseg. S

D SCRL et e 6
AOC ittt O SPLeeeeeeeeeeeee et 16
DoOXIgeN...cciiiiic O SICuiiiiicieiict e 9eseg

E SIC/ MOAULES_ XXKuueverieeeeeereeereseeeeeeeseeeseeseesesseseesenens 6
CXoruereeaeeeeeasaese sttt sttt sttt ettt ettt ettt esene s 6 src\modules_PIC_32_bitS.......cccervrvrrerererrerernen. 10

F src\modules_PIC_8_Dbits.....ccccovevvververerirerrerererennan. 9
FLee VEISION. .ottt 5T

G TOOLChAIN . .ciuiieeeeeeeee ettt 11
Global Options.......ccveeevvicireieiririiccceeeeenenes 11 U

H UART oottt 16
HTML..ovoveeeeeeteeeeeeereteeeveveteeeveve st eesess s esenee 6 UART_CLOCK.....eiieeeisierereesresesseeenens 8

I A%
T2C e e 16 WPUBu e 15
IDE include paths......ccccoeveuviricininicincinicicneiaes 9 X
ICuiiiieiieieeee e 6,9 eseg. XC compilers....ooirrrriireiiniriiiieiniiiciese e 4

L XCB2eteeeeerereeeeereteeeeereeeee et s et 10
LCD et 4 KCBeieeiereeirtsietetstete ettt eaens 9
LTHD Nt 7 XC8 ComPIler..uucuieciiiieieeiieirieieieeeeeneeneeenens 9

M #
MaKer VErSiON...uuuruereereerersessssssssssessseessseesseessnes 5 H#pragma config.....iirininieieee e 8

17/19

LaurTec LTlib5 User Manual

Bibliography

[1] swww.LaurTec.it: official site where you can download the LTlib software upgrades.

18/19

http://www.LaurTec.it/
http://www.LaurTec.it/

LaurTec LTlib5 User Manual

History

Version Author Revision Description

7. March. 2020 1.0 Mauro Laurenti | Mauro Laurenti | Original version.

19/19

